Kan injectivity in order-enriched categories
نویسندگان
چکیده
Continuous lattices were characterised by Mart́ın Escardó as precisely the objects that are Kan-injective w.r.t. a certain class of morphisms. We study Kan-injectivity in general categories enriched in posets. An example: ω-CPO’s are precisely the posets that are Kan-injective w.r.t. the embeddings ω →֒ ω + 1 and 0 →֒ 1. For every class H of morphisms we study the subcategory of all objects Kan-injective w.r.t. H and all morphisms preserving Kan-extensions. For categories such as Top0 and Pos we prove that whenever H is a set of morphisms, the above subcategory is monadic, and the monad it creates is a Kock-Zöberlein monad. However, this does not generalise to proper classes: we present a class of continuous mappings in Top0 for which Kan-injectivity does not yield a monadic category. Dedicated to the memory of Daniel M. Kan (1927–2013)
منابع مشابه
Kz-monadic Categories and Their Logic
Given an order-enriched category, it is known that all its KZ-monadic subcategories can be described by Kan-injectivity with respect to a collection of morphisms. We prove the analogous result for Kan-injectivity with respect to a collection H of commutative squares. A square is called a Kan-injective consequence of H if by adding it to H Kan-injectivity is not changed. We present a sound logic...
متن کاملOrder dense injectivity of $S$-posets
In this paper, the notion of injectivity with respect to order dense embeddings in the category of $S$-posets, posets with a monotone action of a pomonoid $S$ on them, is studied. We give a criterion, like the Baer condition for injectivity of modules, or Skornjakov criterion for injectivity of $S$-sets, for the order dense injectivity. Also, we consider such injectivit...
متن کاملCategories Enriched over a Quantaloid: Isbell Adjunctions and Kan Adjunctions
Each distributor between categories enriched over a small quantaloid Q gives rise to two adjunctions between the categories of contravariant and covariant presheaves, and hence to two monads. These two adjunctions are respectively generalizations of Isbell adjunctions and Kan extensions in category theory. It is proved that these two processes are functorial with infomorphisms playing as morphi...
متن کاملConvergence and quantale-enriched categories
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) ...
متن کاملCategorical Structures Enriched in a Quantaloid: Categories, Distributors and Functors
We thoroughly treat several familiar and less familiar definitions and results concerning categories, functors and distributors enriched in a base quantaloidQ. In analogy with V-category theory we discuss such things as adjoint functors, (pointwise) left Kan extensions, weighted (co)limits, presheaves and free (co)completion, Cauchy completion and Morita equivalence. With an appendix on the uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 25 شماره
صفحات -
تاریخ انتشار 2015